metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊D28, (C2×C4)⋊D28, C7⋊1C2≀C22, (C2×C28)⋊1D4, C23⋊C4⋊3D7, C22⋊C4⋊1D14, (C2×Dic7)⋊1D4, (C22×D7)⋊1D4, (C22×C14)⋊2D4, C23⋊D14⋊1C2, C22⋊D28⋊1C2, D4⋊6D14⋊1C2, (C2×D4).11D14, C22.8(C2×D28), C22.24(D4×D7), C14.13C22≀C2, (D4×C14).8C22, (C23×D7)⋊1C22, C23.D7⋊1C22, C23.2(C22×D7), C23.1D14⋊1C2, (C22×C14).2C23, C2.16(C22⋊D28), (C7×C23⋊C4)⋊4C2, (C2×C14).17(C2×D4), (C7×C22⋊C4)⋊1C22, (C2×C7⋊D4).2C22, SmallGroup(448,275)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C2×C14 — C22×C14 — C2×C7⋊D4 — D4⋊6D14 — C23⋊D28 |
C1 — C2 — C23 — C23⋊C4 |
Generators and relations for C23⋊D28
G = < a,b,c,d,e | a2=b2=c2=d28=e2=1, ab=ba, ac=ca, dad-1=eae=abc, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1500 in 198 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C22⋊C4, C22⋊C4, C2×D4, C2×D4, C4○D4, C24, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C23⋊C4, C23⋊C4, C22≀C2, 2+ 1+4, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, C2≀C22, D14⋊C4, C23.D7, C7×C22⋊C4, C2×D28, C4○D28, D4×D7, D4⋊2D7, C2×C7⋊D4, C2×C7⋊D4, D4×C14, C23×D7, C23.1D14, C7×C23⋊C4, C22⋊D28, C23⋊D14, D4⋊6D14, C23⋊D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, D28, C22×D7, C2≀C22, C2×D28, D4×D7, C22⋊D28, C23⋊D28
(1 8)(2 38)(3 53)(4 25)(5 12)(6 42)(7 29)(9 16)(10 46)(11 33)(13 20)(14 50)(15 37)(17 24)(18 54)(19 41)(21 28)(22 30)(23 45)(26 34)(27 49)(31 52)(32 39)(35 56)(36 43)(40 47)(44 51)(48 55)
(1 30)(2 16)(3 32)(4 18)(5 34)(6 20)(7 36)(8 22)(9 38)(10 24)(11 40)(12 26)(13 42)(14 28)(15 44)(17 46)(19 48)(21 50)(23 52)(25 54)(27 56)(29 43)(31 45)(33 47)(35 49)(37 51)(39 53)(41 55)
(1 44)(2 45)(3 46)(4 47)(5 48)(6 49)(7 50)(8 51)(9 52)(10 53)(11 54)(12 55)(13 56)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 43)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 37)(30 36)(31 35)(32 34)(38 56)(39 55)(40 54)(41 53)(42 52)(43 51)(44 50)(45 49)(46 48)
G:=sub<Sym(56)| (1,8)(2,38)(3,53)(4,25)(5,12)(6,42)(7,29)(9,16)(10,46)(11,33)(13,20)(14,50)(15,37)(17,24)(18,54)(19,41)(21,28)(22,30)(23,45)(26,34)(27,49)(31,52)(32,39)(35,56)(36,43)(40,47)(44,51)(48,55), (1,30)(2,16)(3,32)(4,18)(5,34)(6,20)(7,36)(8,22)(9,38)(10,24)(11,40)(12,26)(13,42)(14,28)(15,44)(17,46)(19,48)(21,50)(23,52)(25,54)(27,56)(29,43)(31,45)(33,47)(35,49)(37,51)(39,53)(41,55), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,37)(30,36)(31,35)(32,34)(38,56)(39,55)(40,54)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)>;
G:=Group( (1,8)(2,38)(3,53)(4,25)(5,12)(6,42)(7,29)(9,16)(10,46)(11,33)(13,20)(14,50)(15,37)(17,24)(18,54)(19,41)(21,28)(22,30)(23,45)(26,34)(27,49)(31,52)(32,39)(35,56)(36,43)(40,47)(44,51)(48,55), (1,30)(2,16)(3,32)(4,18)(5,34)(6,20)(7,36)(8,22)(9,38)(10,24)(11,40)(12,26)(13,42)(14,28)(15,44)(17,46)(19,48)(21,50)(23,52)(25,54)(27,56)(29,43)(31,45)(33,47)(35,49)(37,51)(39,53)(41,55), (1,44)(2,45)(3,46)(4,47)(5,48)(6,49)(7,50)(8,51)(9,52)(10,53)(11,54)(12,55)(13,56)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,37)(30,36)(31,35)(32,34)(38,56)(39,55)(40,54)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48) );
G=PermutationGroup([[(1,8),(2,38),(3,53),(4,25),(5,12),(6,42),(7,29),(9,16),(10,46),(11,33),(13,20),(14,50),(15,37),(17,24),(18,54),(19,41),(21,28),(22,30),(23,45),(26,34),(27,49),(31,52),(32,39),(35,56),(36,43),(40,47),(44,51),(48,55)], [(1,30),(2,16),(3,32),(4,18),(5,34),(6,20),(7,36),(8,22),(9,38),(10,24),(11,40),(12,26),(13,42),(14,28),(15,44),(17,46),(19,48),(21,50),(23,52),(25,54),(27,56),(29,43),(31,45),(33,47),(35,49),(37,51),(39,53),(41,55)], [(1,44),(2,45),(3,46),(4,47),(5,48),(6,49),(7,50),(8,51),(9,52),(10,53),(11,54),(12,55),(13,56),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,43)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,37),(30,36),(31,35),(32,34),(38,56),(39,55),(40,54),(41,53),(42,52),(43,51),(44,50),(45,49),(46,48)]])
49 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 7A | 7B | 7C | 14A | 14B | 14C | 14D | ··· | 14L | 14M | 14N | 14O | 28A | ··· | 28O |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | ··· | 14 | 14 | 14 | 14 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 28 | 28 | 28 | 28 | 4 | 8 | 8 | 28 | 28 | 56 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | ··· | 8 |
49 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D7 | D14 | D14 | D28 | D28 | C2≀C22 | D4×D7 | C23⋊D28 |
kernel | C23⋊D28 | C23.1D14 | C7×C23⋊C4 | C22⋊D28 | C23⋊D14 | D4⋊6D14 | C2×Dic7 | C2×C28 | C22×D7 | C22×C14 | C23⋊C4 | C22⋊C4 | C2×D4 | C2×C4 | C23 | C7 | C22 | C1 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 6 | 3 | 6 | 6 | 2 | 6 | 3 |
Matrix representation of C23⋊D28 ►in GL8(𝔽29)
28 | 0 | 18 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 18 | 28 | 26 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 27 | 0 | 28 | 1 |
28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 1 | 27 |
0 | 0 | 0 | 0 | 12 | 16 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
5 | 13 | 26 | 27 | 0 | 0 | 0 | 0 |
3 | 8 | 4 | 1 | 0 | 0 | 0 | 0 |
7 | 24 | 24 | 16 | 0 | 0 | 0 | 0 |
10 | 17 | 26 | 21 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 16 | 1 | 8 | 18 |
0 | 0 | 0 | 0 | 12 | 16 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 16 | 0 | 28 |
21 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 24 | 8 | 16 | 0 | 0 | 0 | 0 |
24 | 17 | 16 | 21 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 22 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 16 | 1 | 0 |
0 | 0 | 0 | 0 | 17 | 13 | 0 | 1 |
G:=sub<GL(8,GF(29))| [28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,18,0,1,0,0,0,0,0,0,18,0,1,0,0,0,0,0,0,0,0,28,18,0,27,0,0,0,0,0,28,0,0,0,0,0,0,28,26,1,28,0,0,0,0,0,11,0,1],[28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,11,7,2,12,0,0,0,0,16,18,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,27,28],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[5,3,7,10,0,0,0,0,13,8,24,17,0,0,0,0,26,4,24,26,0,0,0,0,27,1,16,21,0,0,0,0,0,0,0,0,28,16,12,12,0,0,0,0,0,1,16,16,0,0,0,0,28,8,1,0,0,0,0,0,0,18,0,28],[21,13,12,24,0,0,0,0,13,8,24,17,0,0,0,0,0,0,8,16,0,0,0,0,0,0,16,21,0,0,0,0,0,0,0,0,18,22,12,17,0,0,0,0,13,11,16,13,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
C23⋊D28 in GAP, Magma, Sage, TeX
C_2^3\rtimes D_{28}
% in TeX
G:=Group("C2^3:D28");
// GroupNames label
G:=SmallGroup(448,275);
// by ID
G=gap.SmallGroup(448,275);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,219,58,570,1684,438,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a*b*c,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations